

Evolution of safety standards for A3 refrigerants in RACHP systems

Dr Daniel Colbourne

Side Event, Meeting of the Parties of the Montreal Protocol FAO, Rome, 7th November 2019

Introduction

Why has it been so difficult to implement "favourable" requirements in safety standards for A3 refrigerants?

- Primarily, commercial opposition
- Committees and WGs stuffed with very professional, articulate, intelligent technical "lobbyists"

Totally unreasonable conduct at a time when climate change is becoming so critical

Introduction

How to overcome these barriers?

- Match the strength of personnel
- Generate irrepressible technical arguments and data

No need for naturals!

Don't want to change (again)!

Have to be cautious!

A commercial threat!

My boss told me to!

Want absolute proof of safety!

Grrrrr!!!

Standards development process

Vast tables in horizontal standards...

F.g., from EN 378: 2016 (Just for class A refrigerants ...)

Allows formation of questionable/arbitrary segmentation & barriers

Boxes off the "disliked" technologies

Possible approaches include three general options

Incremental black box testing

... As in draft IEC 60335-2-40

Lots of broadly disconnected, formulae, tests, etc.!

Joined-up black box testing

Main question is hole size

Ordinarily, hole size (leak mass flow) is most challenging issue

Choice of hole size affects everything else...

Largest hole size found in project so far

- 0.4 mm² in "uninterfered" cases
- 0.8 mm² with human interference

Another issue: refrigerant distribution in a space

Until recently standards assumed, either

- Quadri-homogenous mixture in room,
- Or severely stratified layer in room based on severely pessimistic assumptions
 GIZ Proklima C4 and EULF project looked into distribution in room
 and associated assumptions
- In addition to leak hole size, effect of enclosure geometry, airflow, etc.

Helped identify and generate new formulae, tuned more to equipment characteristics

In conclusion

But, very difficult to correlate max floor conc with encl geometry, etc So, simply...

Any charge limiting mechanism,

leak detection system, airflow, etc.

will function as it does... reliability

- Make holes in the refrigerant circuit
- Monitor floor conc surrounding the unit
- Acceptance: <u>C_{max}</u> should not exceed X % of LFL can be assessed as today

(Similar approach now in IEC 60335-2-89 for commercial cabinets)

Offers freedom to manufacturers to enhance safe design of unit

Final remarks

Resolving the problem of obstructive RACHP safety standards has been a huge headache!

 Gradually, improvements have been developing; step-by-tiny-step

With the increasing interest in A3 and other natural refrigerants and industry recognition of them as serious alternatives, support for revising RACHP standards has grown

- Stakeholders opposing such progress are becoming more and more ashamed
- Imposing opposition to revised standards illustrates these stakeholders' unsavoury anti-climate motivation!

A variety of approaches have evolved during this journey

Hopefully things will change....

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Thank you for your attention!